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A theory of vortex sound is formulated in the form of multipole expansions and an explicit formula
is presented for the wave pressure excited by a time-dependent vorticity field localized in space. This
is applied to the case of the oblique collision of two vortex rings at right angles, in which higher-order
terms are important to represent asymmetric emission. The vortex motion and the generated waves
are also studied experimentally and numerically. The initial setup of the two vortices is arranged
so that they come into contact by their own motions and perform a reconnection of the vortex
lines. The acoustic waves generated by the vortex motion have been observed in the far field in
the laboratory, and the detected pressure signals are represented as a series of several dominant
modes of the spherical harmonics. Morphological development of the vortices and trajectories of
the vortex cores in the collision process are observed by optical means. Computer simulation of the
vortex motion has been carried out for a viscous incompressible fluid at a lower Reynolds number
than that of the experiment. The evolution of the vorticity field thus obtained can be used to
predict the wave profile by using the theoretically derived formula. The corresponding wave modes,
obtained from both laboratory experiment and computer simulation independently, are compared.
It is remarkable that two main quadrupole modes (two second-order spherical harmonics) are in
qualitative agreement between the two cases. Third-order modes are also estimated, and one mode
is responsible for the characteristic emission of asymmetric waves observed in the experiment, which

SEPTEMBER 1993

is associated with the details of the collision process.

PACS number(s): 47.32.Cc, 43.28.+h, 47.10.+¢g

I. INTRODUCTION

Wave generation by a vortex motion is studied, based
on the fundamental equations of motion at low Mach
numbers and high Reynolds numbers. The physical idea
is as follows. Suppose that there exists an unsteady fluid
motion with a localized vorticity field w of a length scale
l, inducing an approximately solenoidal field of velocity
v of a typical magnitude u. Pressure fluctuations are
excited at large distances by the vortex motion. These
drive acoustic waves. The source flow is surrounded by
an outer wave field scaled on the length A = c7, where
c is the sound speed in the undisturbed medium at rest
and 7 = l/u is a typical time scale of the vortex motion.
Typical Mach number M is assumed to be much less than
unity:

M=u/cx1

Owing to this condition, the whole field is separated into
two fields: inner flow and outer wave regions because
the wave scale A = [/M is much larger than the vortex
scale I. Theory of vortex sound is developed under these
circumstances [1-9,27].

Collision of two vortex rings is a typical example of
three-dimensional vortex interactions which can be stud-
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ied both experimentally and computationally. In the past
experimental studies of observing the acoustic waves were
carried out for the head-on collision of two vortex rings
[7,10]. The setup of head-on collsion has an axisymmetric
property, while the oblique collision of two vortex rings
studied here has no such symmetry. This requires an in-
creased amount of tasks in order to study the details of
the motion and analyze the detected wave signals both
experimentally and computationally (see Ref. [11], a pre-
liminary report of the study). In such a collision at a
high Reynolds number, we expect far more complex in-
teraction, including the contact sand reconnection of an-
tiparallel vortex lines. As is considered in the subsequent
sections, this event is associated with an energetic mo-
tion of vortex lines, resulting in excitation of asymmetric
waves. Hence the analysis of the wave data provides in-
direct (or remote sensing) information about the time
evolution of the complex vortex motion.

The mechanical process of sound generation is formu-
lated mathematically, and explicit formulas of the wave
profile are given in terms of the time-dependent vortic-
ity field. Study of the vortex sound using vortex rings
has been made in the past decade for various experimen-
tal arrangements, and the results are reported in Ref. [8]
for three typical problems of acoustic emission: (i) by
head-on collision, (ii) by a vortex ring passing nearby a

1866 ©1993 The American Physical Society



48 OBLIQUE COLLISION OF TWO VORTEX RINGS AND ITS . ..

circular cylinder, and (iii) by one passing nearby a sharp
edge. Studies are also made for a sphere [12] and for a
finite plate [13]. Note that an optical observation is made
for the acoustic waves generated by a rectilinear vortex
impinging on an aerofoil [14]. The vortex sound theory
is also reviewed in Refs. [9,27].

The geometry of the vortex motion studied in this pa-
per is as follows. Initial state is given in such a way that
two vortex rings are set to move along the paths inter-
secting at right angles and collide with each other in due
course. Two independent studies are presented here: one
is an experimental observation of the acoustic waves gen-
erated by the two-vortex collision (Sec. III), and the other
is a numerical simulation of the same problem based on
the Navier-Stokes equation but at a lower Reynolds num-
ber. Although this numerical simulation is carried out
for an incompressible fluid motion, this is useful in the
present wave problem to obtain the wave profile in an
asymptotic sense (Sec. IV), since the coefficients in the
formula are also derived by using the solenoidal property
of the inner velocity field. New general mathematical
formulation is presented in Sec. II, in which a formula of
the wave pressure generated by a vortex motion is given
consistently in the form of multipole expansions to any
order. With using this formula, the component waves
are estimated numerically by the computed vortex mo-
tion. These are compared with the ones derived from the
observation (Sec. V). The observed wave signals show ex-
istence of the third-order component (octupole), which is
a new feature and is discussed in Sec. VL.

II. MATHEMATICAL FORMULATION

We present here a general formulation, in which a mul-
tipole expansion is carried out to any order n. Suppose
that there exists an unsteady fluid motion having a local-
ized time-dependent vorticity w(x,t) characterized with
the scales | and u in the otherwise uniform fluid at rest
of density po and pressure po, where the term localized
means that w decays exponentially as the distance |x|/!
tends to infinity. Due to the unsteady vorticity field of
the time scale 7 = l/u, pressure fluctuations will be gen-
erated at large distances, giving rise to acoustic waves.

A. Governing equations

The basic equation of the aerodynamic sound genera-
tion is given by Lighthill [15] in the form of the inhomo-
geneous wave equation for the density p:

9%p 2v72 9?
W eV P= 8.’2,‘(9.1]' Tz]’ (1)

where

Tij = pviv; + (p — c*p)bi; — 735

v; is the ith component of the velocity v, p the pressure,
and 7;; the viscous stress tensor. Summation convention
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is assumed on the right-hand side (RHS) for the repeated
indices taking 1, 2, and 3.

In the inner region scaled by the length ! and the time
7, the ratio of the two terms on the left-hand side (LHS)
is estimated as

loee| T2\ _ 2
oy =0\ o | =our).

In the first approximation neglecting the terms of O(M?)
and hence the term p;;, we have

~V2p = poa,'aj ('U,"Uj) , (2)

where 8; = 0/8z;. This is equivalent to the Navier-
Stokes equation for an incompressible fluid:

po Byv; + povjOjv; = —0; p+ 85 Tji (3)

divv=0 , 4)

where §; = 8/6t. In fact, taking the divergence of (3)
under the solenoidal condition (4) yields the equation (2),
where we have used 9;9; 7j; = 0 since 7j; = u(8;v; +0;v;)
for an incompressible fluid with a constant shear viscosity
.
In the outer region where the fluid velocity |v| decays
rapidly, the equation of motion can be linearized with
respect to the perturbation velocity, and the adiabatic
relation, p—po = c?(p — po), is satisfied approximately,
since the viscosity effect is much smaller and estimated
as

18; T _ pAT2 —1p72
[po Ovs| =0 poT ! = O(Re™ M),

where Re=ul/v (> 1, assumed) is the Reynolds number
of the inner source flow, and v=p/po. Thus the RHS
of the equation (1) is neglected in the leading order of
approximation, and the pressure p is governed by the
wave equation:

1 8%p
(Ref. [8]). The wave region is characterized by an outer
variable, defined by % = x/\, taking values of order unity
in the outer region.

An inner problem is solved first to represent the source
flow of a viscous vortex motion. Then an outer solution
is sought so as to match the inner solution just obtained.
This solution represents an acoustic wave emitted by the
vortex motion, which is called the vortex sound.

B. Asymptotic formula of the vortex sound

Suppose that the vorticity field w(x,t) = V x v satis-
fies the equation,

Ow — V x (v x w) =vViw, (6)
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derived from the Navier-Stokes equations (3) and (4). It
is convenient to introduce a vector potential A(x,t) and
a scalar potential ®(x,t) for the velocity v(x,t) by the
(Helmholtz) decomposition, v =V x A + V ®g, where
the first term represents the solenoidal part associated
with the vorticity w(x,t) and the second term represents
fluid compressibility or presence of a solid body in the
inner region. From this we have w = V xv =V x (V x
A) = —V2A, assuming the gauge condition V - A = 0.
Therefore the vector potential A is given by

A(x,t) = 47r/‘xy’t) by

The vector x = (z;) is used for the point of observation
and y = (y;) for the point of integration (or the source
point). The factor 1/|x —y| can be expanded in a Taylor
series with respect to y;/r for sufficiently large r = |x|,
which is convergent for |y|/|x| < 1. Thus we obtain

1 = 1
Ai( :72 pnOp1 " Opa
n=1 P1
(7)
where
Whon® = [0 v sy - (®)

The solenoidal part of the velocity is expressed by v(s)
€:jk 0j Ak, where € is the third-order skew symmetrlc
tensor. The velocity field v(®) (x,t) approaches asymptot-
ically to such a field as represented by a velocity potential
@) as |x| — oo.

After some substantial calculation (see Appendix), an
asymptotic expansion of the velocity is given in the form

v(S)(X, t) = 8,8, ) = Z o, ©)

k2

where

B = 3 D Grrenn ) O B, (10)

1 n+1
Qpy..p.(t) = Wn)_‘_‘“‘ /(y X W)p, Yp, "'ypnd3y (11)
(n =1,2,...). Thus we find that an asymptotic expres-

sion of the total velocity in the inner region is given in
the form, v(¥) = grad ®, where

1 1

2(x,t) = Po(x,1) + Qi 9; - + Qi 9:9;
1

+Qijk aiajak; +0(r7?%) , (12)

and the first few terms (the first term ®¢ being considered
below) are
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3
1o}
2 =Y Qg QO =g [rxwndy |
=1 K

(13)
®2 = ZZQ” 3w oz, 71« ’
(14)
Qij(t) = —% /(y X w);y; d’y ,
3 1
®a = ZZZQ“’“ 8z, 00z T’

(15)

Qijr(t) = 32n (y xw)iy;ur &’y

the two potentials ®; and ®, being already given explic-
itly in Ref. [16]. It is almost trivial to show the following
properties:

Qu(t) =0, Qur(t)=0, Qui(t)=0 (16)
by the orthogonality of the two vectors y and y X w.
The resultant impulse of the vortex system is defined by
47wQ;, which is an invariant of motion for unbounded fluid
without external body (see Sec. VI).

The compressibility of the inner source flow [|divv(®|
being O(M?2) and of scale I] is assumed to be localized
and represented by ®(, while the generated acoustic wave
is of larger scale A(>> ) and treated in the next stage.
From the theory of irrotational motion with a localized
rate of expansion O (x,t) = divv(®, the first term &, is
given by the following asymptotic expression [17]:

1 1 1
by = Ro(t); + Rl(t) 81; + Rij (t) 818_7 ;

1
+Rijk(t) Blajak; + 0(7‘_5) , (17)

where Ro, R;, R;j, ... are all functions of time ¢ and de-
termined by the distribution of ©(x,1t).

The presence of a solid body in the vicinity of the vor-
tex motion can be represented by an additional veloc-
ity potential whose asymptotic expression is again of the
form (17) (see, e.g., Ref. [17], Chap. 2.9). In the case of
solid body, the first monopole term must vanish by the
condition of no net outflow over the body surface. Thus
both effects of compressibility and presence of solid body
are represented by the expansion (17).

At large distances from the region of vortex motion,
the equation of motion will be linearized with respect
to the velocity, and the viscosity terms will be neglected
because of the higher order of the space derivatives. Thus
we have po 8, v(®) = —gradp®, where v(®) = grad ® .
Accordmgly, the a.symptotlc form of the inner pressure
p® is given by p(¥) = —pg 8,®, namely

) .1 .1 . 1
P (x,t) = —poPo S~ Pob 31'; — poPij 9:9;

. 1
—poPijk 3i3j8k; +0(r %), (18)
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where a dot denotes a time differentiation, and

Py(t) = Ry, Pi(t) =Q; + R;, Pij(t) = Qi + Ryij,

Pijk(t) = Qijr + Rk, ... .

A general solution to the wave equation (5) is repre-
sented in the form of multipole expansion [4,8], valid in
the outer wave region for |%| > O(1). The wave pressure
p™) matching to the inner solution (18) as |%| — 0 is
given by

p(w) (x,t) = —

—p00;0; [““—P” (t,)]

g———— —

Py(t,) oo [Pi(tr)]

r

— p00;0;01 [—-—Hﬁ(t’)]

+en (19)
where t, = t — r/c is the retarded time. This is verified

J

—Po
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as follows.

Obviously, each term of (19) satisfies the wave equa-
tion. Matching of the two solutions p(® and p(*) is car-
ried out in an intermediate region. In terms of the in-
ner variable defined by the normalization z; = z;/l (and
7 = r/l), both the outer variable #; and intermediate
variable &; are given by

:Ei:MrE,-:Ml“o‘f,-, £i=Ma(f.,;=(Ma/l):Ei, (20)

where « is a parameter in the range 0 < a < 1. Nor-
malized retarded time is £, =t, /7 ={—7 =t — M7,
where £ = t/7, # = r/), and £ = M*"1# = M°7. Using
¢, we have 7 = M %€ and # = M*~2¢. Thus in the limit
M — 0 with keeping £ and ¢; fixed (the intermediate
limit), we obtain ¥ — oo and 7 — 0. As an example we
consider matching of the second-order term. The third
term of the inner pressure (18) is written as

M3« 0 8% 1
550 peag €

whereas the third term of the outer wave pressure (19) is

i 1
—po P 8:9;~ = —po

1 8:0¢; 3

2 . W
IL;(t) = d—tzpi(j UOR

where the superscripts (i) and (w) are used to distin-
guish the functions in the two regions. It is found that
both expressions have the same order of magnitude M 3a
and we have Pi(f) = Pl(;) in the intermediate limit as
M — 0. Crow J4] showed that the second term of the or-
der O(M3>M?(1=2)) =O(M?**) in the brackets [] on the
RHS of (21) can be matched to the term in the next ap-
proximation (including an effect of compressibility, e.g.,
the term py) of the inner expansion. Precisely speak-

ing, an arbitrary term C(f)é;; can be added to Pl(;")(f)
in the leading order matching. If so, in the next order
O(M?*=) the second term in [] of RHS of (21) will in-
clude the additional term of the form C'V2(¢/2) = C/¢.
This arbitrariness drops out if we introduce a monopole
term of the form P = —(M2/12)C(f) by the consis-
tency argument [4]. Then the combined outer solution
po(M/1)3{C(f — #)/# — V2[C (£ — #)/#] } vanishes identi-
cally. Matchings of the other terms are verified similarly.
In particular, in the matching of the fourth terms, an-
other arbitrariness in the dipole term comes in, but can
be dropped out by the same reasoning.

The origin of the first monopole term of (19) is con-
sidered by Kambe [18] and Obermeier [19] (see also
Ref. [7]). It is rhown from the dynamical equation of
motion (Navier-Stokes equation) that

o H(w) (x - o
M3 92 [Pi,- (- M* §)J=_pOM3

o2 [P
8.7, J5 (%) + %Mz(l_a)fnij & +-- } ,
(21)
|
5—3y 1 ..
Py(t) = — 1%7 > t), Kt)=13 /vz(y,t) AR

(22)

where K is the total kinetic energy and v the ratio
of specific heats. We assume that significant effect of
the compressibility of the vortex motion appears only in
this isotropic term due to the assumption of the com-
pact source flow and M < 1, mentioned in the begin-
ning. The rest factors P;, P;; , P;ji,... of the multipole
components of p(*) are given by Q; v Qij , Qijk ... as-
sociated with the vorticity w as in Egs. (13)-(15) and
R; ,R;;,Riji ,... representing the influence of a solid
body.

C. Far-field expression without external body

The expression (19) is the pressure of the acoustic wave
generated by the vortex motion described by w(x,t).
The second term of (19) represents dipole emission due
to change of the total impulse 47Q; and/or presence of
a solid body. In the present case of unbounded space
where there exists neither solid body nor external force,
the impulse 47Q); is conserved (see Sec. VI), and hence
the dipole term disappears since the coefficient P; is re-
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lated to the force acting on the system [8,20]. The factors
P;; and P;j;, are given only by Q;; and Q;;, respectively.
The Q;; terms are usually called quadrupole.

In the far-field where observations are made, the ex-
pansion is much simplified because, as |%X| becomes large,
the space derivatives applied to 7! in (19) become higher
order of smallness than those applied to the functions of
t. as # — oo. Neglecting those terms and retaining only
the terms of O(r~!), we obtain the far-field expression

T;Tj

P (x,8) = —po BN (8,) - - o)

Po (4 TiT;Th

r3

+ ey, (23)
where superscript (n) denotes the nth time derivative.
The first term is isotropic and is related to the rate of
energy dissipation é = —K. This is written as (y = 7/5
for the air)

_Po (1 K é
Py )(t )= 15mc2r - (29)

Aolt,
oftr) = 15mc2r

Here we have retained up to the Qjx terms, i.e., the
third-order moments of the vorticity w [see (15)]. This
is because in the experimental observation these com-
ponents have been found to be significant, as described
below.

D. Oblique collision

Cousider a problem that the initial state is given as fol-
lows. Two vortex rings are set to move along the paths
intersecting at right angles at the origin and collide with
one another. The bisecting straight line between the two
paths of the vortex center is taken as the polar axis § = 0
(along the z3 axis) of the spherical coordinate system
(Fig. 1). The plane perpendicular to the x5 axis is the
(z1,z2) plane on which 6 = m/2. There are two symme-
try planes including the z3 axis: one includes the trajec-
tories of the vortex centers which is defined as the (z2, z3)
plane and the plane (z1,z3) perpendicular to it is also a
symmetry plane which bisects the two trajectories. The

P2(Q) s Pr(¢)(cosg, sing),

=1 (Q(3) (3) _ 2Q(3))P0 (
_1 (Q(3) + Q31))P2 cosp — 1 (Q(3)
Similarly, the third-order form F3 is given as follows:

4 ~(4 4 4
= 1(2Q%% — Q1% — Qi)Y + 35(Q1%s -

+[linear combination of {P; cos ¢, P;sing, P?sin2¢4, P3cos3¢ and P3sin3¢}],

where only the terms to be used later are written explic-
itly, and the tilde symbol denotes Q113 = Q113 + Q131 +
Q311, etc. By the relations (16), the coefficients of PJ,
P2, and P} are reduced to
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X3

X2

FIG. 1. Setup of the collision of two vortex rings and coor-
dinate systems.

plane ¢ = 0 is taken along the positive z; axis. Thus
the two vortex rings (centers) move toward the origin
along the direction of the angles (8, ¢) = (7/4,7/2) and
(m/4,3mw/2) before colliding interaction. From the geo-
metrical arrangement just mentioned, the acoustic pres-
sure p(6, ¢,t) is characterized by the symmetry

p(oa ""¢7t) =p(0,¢vt) L] P(07¢+7r,t) =P(9’¢,t) .

The formula (23) is rewritten by using the spherical
polar coordinates (r,0,¢): z1 = rsin(f)cos¢d, zo =
rsin(f) sin ¢, and x3 = r cos§. Then the nth order form,
—Qt(-?):cia:j/rz for n = 2 or

(25)

like the expression Fp =
F3 = Qs:-,)cximj$k/7'3 for n = 3, can be represented in
terms of the nth order (or lower-order) spherical har-
monics,

.., Pr(¢) (cos(ng), sin(ng)) ,
where P?({) and P¥(() are the Legendre polynomials (k = 1,..

.,n) and ¢ = cos@. In fact, we have

(3) + Q(s))Pz2 cos(2¢)

Q$Y)P}sing — 1(QF) + Q) PZsin(2¢) . (26)
2555) P2 cos(2¢)
(27)
[
1P + QP — 20y = —@ | (28a)
1(2Q55 — Q1D — Q%) = QS5s — (1/5) Q%Y. ,  (28b)



( 7(4) A (4) ) = (4) (4) + Z(Q(‘i) (4)

113 — w223 311 — w322 113 — @223 (28¢)

In view of the symmetry (25), the terms of the second line
of Egs. (26) and (27) must disappear. Thus the pressure
(23) with the symmetry (25) suggests the following form:

p(0,$,t) = Ao(t) + A1(t)Pg(cos8)
+A2(t) P#(cos 8) cos(2¢)
+B1(t) P§ (cos ) + By(t)PZ(cos 6) cos(2¢) ,
(29)

if the pressure is observed at the stations (robs, 8, ¢) on a
spherial surface of a fixed radius r,,s centered at the ori-
gin. Thus it is found that the far-field acoustic pressure
is represented in terms of the five normal modes with five
coeflicient functions of time,

A = (Ao(2), A1(t), A2(t), Bi(t), B2(t)) .

This result is useful for the analysis of the ob-
served signals. Here the Legendre functions are
P9=(1/2)(3cos?0—1), P?=3sin*49, P9=(1/2)(5cos® 6—
3cosf), and P2=15(cosf — cos®0).

Considering Eqs. (23) and (26)—(29), the main mode
coefficients are written in terms of tensor coefficients as

M) =~ 5= QD) , (30a)
Az<t)=—6cz - (QiY® - @ )], (30b)
Bi(t) = 55— B0 - /50, G0
By(t) = 22— (G0 - G0, (30d)

where Aq(t) is given by (24). Note that the retarded time
t, is replaced by t for simplicity since r/c does not change
the profiles. The right-hand sides can be estimated by
the numerical simulation described in Sec. IV. Thus the
expressions (29) and (30) provide the basis of comparison
between the observation and the numerical simulation.

III. EXPERIMENT
A. Experimental setup and procedure

Two vortex rings are generated experimentally by us-
ing a shock tube. The experimental method is essentially
the same as that described in Ref. [7]. The shock wave
formed in the tube is bifurcated into two polyethylene
pipes. The pipes are connected to the end of the shock
tube on one side and to two straight nozzles in a cu-
bic anechoic chamber of inner size 1.8 m on the other
side. The two straight nozzles (of length 750 mm and
circular section of the inner diameter 6 mm) are placed
at right angles. The central axes of the nozzles inter-
sect at the center O of the anechoic chamber, and the
distance between the intersecting point O and the exit
end of each nozzle was 41 mm. The shock waves trans-
mitting through the pipes emerge out of the two nozzle
ends into the air at a room condition (1atm, 21.0°C,
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and ¢ = 344.0m/s). Two vortex rings are formed simul-
taneously at the two exits by the shock impulse. They
approach to each other with their self-induced motion
and perform almost 90° collision. The collision process
of the vortex cores was observed by means of a photo-
sensor and the shadowgraph technique. The signals from
the photosensor are recorded in a microprocessor. These
signals are averaged over ten or five measurements.

The acoustic waves emitted by the 90° collision are
received simultaneously by four 1/2-inch microphones
(Briiel & Kjaer type 4165). The acoustic pressures
were detected at 102 different angular positions on the
three great circles of radius 7ops = 620 mm (with their
centers at the origin) on the three orthogonal planes:
1) ¢ = (n/2, 37/2), (2) ¢ = (0, «), and (3) 0 = /2.
Recording of the acoustic signal is triggered by the shock
signal from a pressure transducer mounted on one of the
nozzles. The raw acoustic signal of a single event is stored
in the form of a digital data set of 1000 words in the mi-
croprocessor through an analog-to-digital converter. The
wave signals associated with the interaction of the vortex
rings are extracted later by eliminating irrelevant noise
from the recorded signals by the same method described
in Ref. [21]. Only average profiles (taken over ten such
sets of data) are considered below.

B. Experimental results
1. Vortex motion

The trajectories of the vortex cores in the (z2, z3) plane
observed by the photosensor are shown in Fig. 2, where
the position Z of each vortex ring denotes the distance
from the end of each nozzle. The passage time T cor-
responding to the vortex position Z was also measured.

FIG. 2. Observed trajectories of the vortex cores in the
(z2,3) plane with C; denoting the core inside and C, the

core outside. The coordinate Z is the distance (mm) from
the end of each nozzle. The arrows with a, b, @, and 8 mark
the positions corresponding to those in Figs. 3 and 7.
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The measurement was made for the cores C, (outside)
and C; (inside) of each vortex shown in Fig. 2. Motion
of the core of a single isolated vortex ring was also exam-
ined. These results are shown in Fig. 3, where the circles,
squares, and triangles show respective positions. The ori-
gin of the passage time 7' is taken at the same origin of the
acoustic measurement. These data of the position Z are
represented in terms of a polynomial of the third order
with respect to T', as shown by the solid lines in the figure.
The three lines show good agreement up to the distance
Z=25mm (or the time T = 2.8ms). It is found from
these figures that the two vortex rings move along the
two straight paths intersecting at right angles like steady
vortex rings with the diameter D=2R;=9.4 mm and ve-
locity U=27.3m/s up to the distance of about 25 mm,
where Ry=4.7mm denotes the ring radius of the initial
state. Hence the interaction of each vortex is weak in
the initial phase. After that, two vortex rings interact
each other strongly and the two vortex cores denoted as
C; (squares of Fig. 3) come into contact. The signal of
the vortex core C; by the photosensor failed to be ob-
served at around 34 mm. On the other hand, the speed
and the size of the side C, do not change significantly
up to the distance about 35 mm (or time T'=3.3 ms), and
these are the same as the single vortex ring (triangles of
Fig. 3). The upper abscissa in Fig. 3 denotes the time
t (ms) of the acoustic measurement, and ¢ is related to
the vortex passage time T (ms) by ¢t = T + 7obs/c, where
Tobs/c=1.80ms is the retarded time.

Typical parameters of the present system are summa-
rized as follows: [=4.7 mm (Ro), u=27 m/s (U), 7=
0.17 ms, and M=0.08. Then we have the typical wave
scale A=cT=58 mm with 7o,s/A=10.7.

t (ms)
4.0 4.4 4.8 5.2 5.6

48

Z (mm)

-—

1 1
2.2 2.6 3.0 34 3.8
T (ms)

0 1 1 L I I

FIG. 3. Observed vortex position Z is plotted against the
time T of passage over the photosensor (lower abscissa) and
the corresponding time ¢ of the wave recording (upper ab-
scissa): circles (core C,), squares (core C;), and triangles (a
single vortex). The solid curves are the polynomial represen-
tation Z = Ei:o 2z, T™ with the coefficients z, determined
to fit the measurement. The broken lines a and b denote the
times T' = 3.23 and 3.38 ms, corresponding to those of Figs. 2
and 7.
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2. Emitted sound

Figures 4, 5, and 6 show the average profiles (bold
lines) of the acoustic pressure at every angle w/6 of
0 or ¢ (the measurement having been made at every
w/18 =10°) on the great circles in the three orthogo-
nal planes: (z2, z3), (1, z3), and (z1, z2) planes, re-
spectively. Light solid lines are the rms error of the
average pressure at each time point. The geometry of
the setup described in Sec. IID suggests that the acous-
tic pressure p(6, ¢, t) is characterized by the symmetry
(25), which is consistent with the observed data. In fact,
the acoustic pressure detected in the plane 6 = w/2 was
expanded into Fourier series with respect to the angle
¢, and it has been found that the Fourier coefficients of
sin (m¢@) and cos (m¢) were all insignificant except those
of cos(2¢) and 1. In the Fourier decomposition with
respect to the angle 6 in the plane (z2,z3), the compo-
nent of sin (20) has been found, which is considered to
be caused by asymmetrical vortex motion (e.g., tilting
of the z3 axis as seen in Fig. 2), but its amplitude is
relatively small compared to the components of cos (m#)
(m = 0-3). Hence we neglect this asymmetrical compo-
nent and assume that the detected acoustic pressure is
expressed by (29) where higher-order terms are neglected
since the observed Fourier coefficients of those terms
are not significant. The amplitudes of the main modes
A = (Ao, A1, Az, By, B3) in (29) can be determined as
a function of time with the least squares method by using
the data measured in two different orthogonal planes in
the following way. The pressure signals observed at 36
angular stations of § along the observation circle 7 = 7rqps
in the plane (z2, z3) are expressed by Eq. (29) in which
cos (2¢)=—1. Hence we obtain 36 simultaneous linear
equations for the five amplitudes of A at each time point.
Similarly we obtain another 36 linear equations for the
same unknown amplitudes of A from the data observed
in the plane (z,, z3) at which cos (2¢)=1. From these 72

algebraic equations, the amplitudes A = (Ao, ..., B2)
0.2 - -3
b (Pa) ¢ =2 ¢ =3m2
0.1 0 =0 6 =x
0.0
- 01 é 6 g 6
3 3
. o~
—— =
72 72
23 23
Sn6 Sm6
1 I L 1 1 1 1 1 { |
45 49 53 57 61 45 49 53 57 61
t (ms) t (ms)

FIG. 4. Average profiles (bold curves) of the acoustic pres-
sure observed at 12 angular positions of 0 in the (z2,z3) plane
(¢ ==w/2,3m/2 and Tobs = 620 mm). The light curves are the
rms error of the average curve at each time point.
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0.2 . (pa) ¢=0 ¢=
0.1 6 _
0.0
- 0.1
71/6
n/3 ;.13

a«;ﬁv\mm#%w

W%‘%ﬁ&w@%—ﬁ

4.5 4.9 5 3 5.7 6.1 4.5 4,9 S 3 5 7 6.1
t (ms) t (ms)

FIG. 5. Average profiles (bold curves) of the acoustic pres-
sure observed at 12 angular positions of 8 in the (z1,z3) plane
(¢ =0, m and robs = 620 mm). The light curves are the rms
error of the average curve at each time point.

are determined by the least squares method at each time
point. The profiles thus obtained are shown in Figure
7. The ordinate marked on the left-hand side denotes
the scale in the unit Pa, while the one on the right-hand
side denotes the scale of the modes Ag, A;, and A, nor-
malized by poRoU*/(c?*7obs) and the modes B; and B,
normalized by poRoU®/(c3rops). The upper abscissa de-
notes the time scale normalized by Ry /U, where the ori-
gin of the normalized time is taken at the time t=5.178 ms
marked by the broken line . These dimensionless quan-
tities [Ao, A1, Ay, By, B;] and £ are compared with the
results of the numerical simulation (Fig. 12).

It is found that the monopole amplitude Ao(t) is
small, whereas the two quadrupole amplitudes A;(t)
and A;(t) are substantial. The first quadrupole mode
PY(cos 0)= (3 cos?20 —1)/2 is ax1symmetrlc and the sec-
ond mode PZ(cos ) cos(2¢)=3sin*(8) cos(2¢) would be

8 =2
02 b (pa)

0.1 ¢=0 . ¢=n
0.0

- 0.1 6 1176

; 5m3

72 32

273 43

@ Q 7:#6

1 1 I
5.3 5.7 6.1
t (ms)

t (ms)

FIG. 6. Average profiles (bold curves) of the acoustic pres-
sure observed at 12 angular positions of ¢ in the (z1, z2) plane
(6 = w/2 and robs = 620 mm). The light curves are the rms
error of the average curve at each time point.
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related to an anisotropy in the (z1, z2) plane as inferred

from its coefficient —Q{3 + Qgsz) of (26). The effect of
these two quadrupoles on the acoustic pressure is of the
same order. In fact, the larger amplitude of A, (t) is al-
most compensated by the smaller modal amplitude of PY
as compared with the pair [43(t), PZ]. The third-order
mode Bj(t) is significant. Two broken lines ¢ and b in
Fig. 7 denote the times of the sound which indicate, re-
spectively, the minimum and maximum amplitudes of the
quadrupole mode A; (or the maximum and the minimum
of the mode A;). The amplitude of the mode By takes
the maximum and minimum values at the times 5.124 ms
(a) and 5.223 ms (B) marked by arrows. These times a,
b, a, and B are also shown in Fig. 3, and the vortex ring
at these times is located at the position of the arrows a,
b, a, or B marked in Fig. 2, respectively.

Figures 8, 9, and 10 show the instantaneous directional
distributions of the acoustic pressure at six times mea-
sured on each great circle in the planes ¢=(7/2, 37/2), ¢
=(0, w), and =mn/2, respectively, in which the radial
length from the origin represents the magnitude of pres-
sure with a linear scale. The single and double cir-
cles denote positive and negative values of the observed
pressure, respectively. The thin solid curves show the
quadrupolar distribution as calculated with the sum of
two quadrupole components A;(¢)[3cos?(#) — 1]/2 and
A;(t)3sin?(0) cos(2¢), using the amplitudes A;(t) and

-4 2 0 2 4
T T T T —r T
0.02 | {05
Ao Ao
0.0 W_M./\ s~ 0.0
-0.02
0.04 F 4-0.5
0.02 | {05
Al e
0.0 B D\ N 0.0
-0.02 | \ 4-0.5
0.02 + 4 0.5
A2 N Az
0.0 o 0.0
-0.02 | +4-0.5
0.02 + 4 6.0
B B
0.0 ~—/ A 0.0
0.02 F \f/ -6.0
0.02 + a b +4 6.0
B2 B2
0.0 0.0
-0.02 alp --6.0

L
4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9
t (ms)

FIG. 7. Observed amplitudes of five dominant wave modes
of Eq. (29) plotted against the time ¢t (ms) with the origin
fixed by the shock signal. The left and right ordinates denote
the pressure scale in the unit Pa and the dimensionless scale,
respectively. The upper time scale is dimensionless with the
origin at the time b. The marked times are (a,b)=(5.031,
5.178) ms and (a, B8)=(5.124, 5.223) ms.
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¢ =x/2, 3n/2

t=5.031ms 2 t=5.064 ms ikl t=5.124 ms
(a)

FIG. 8. Polar diagram of the pressure at
six times corresponding to the signals of
Fig. 4 [measured in (z2,z3) plane| and the
curves of Fig. 7. The labels a, b, a, and B
refer to positions marked in Figs. 3 and 7.
The single and double circles denote positive
and negative values of the observed pressure.
The thick solid curves show the pressure of
(29) with all the amplitudes (Ao,...,B2) at
the time shown, and the thin curves are the
quadrupolar component from A; and A,.

t=5.031 ms b3 t=5.064 ms 72 t=5.124 ms
(a)

FIG. 9. Polar diagram of the pressure at
six times corresponding to the signals of
Fig. 5 [measured in (z1,z3) plane] and the
curves of Fig. 7. The curves and marks are
as in Fig. 8.

an t=5.145ms

w2 (x2) 25031 ms
.

re . (a)

FIG. 10. Polar diagram of the pressure
at six times corresponding to the signals of
Fig. 6 [measured in (z1,z2) plane] and the
curves of Fig. 7. The curves and marks are
as in Fig. 8.
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A, (t) in Fig. 7. The thick solid lines represent the distri-
bution calculated with the form (29), using the compo-
nents Ag(t), Ai(t), Az2(t), Bi(t), and B;(t). The differ-
ence of the directional distribution between Figs. 8 and
9 lies only on the value of the angle ¢, i.e., cos(2¢)=—1
for Fig. 8 and 1 for Fig. 9. The effect of the amplitude
B, (t) is significant at later times. The directional distri-
butions at 5.031 ms, 5.178 ms, 5.124 ms, and 5.223 ms in
these figures represent those at the times a, b, @, and
in Fig. 7, respectively.

IV. NUMERICAL SIMULATION

A. Methods and conditions of numerical simulation

Numerical simulation of collision of two vortex rings
was carried out for the parallel initial setup and also for
several initial angles in order to see the mechanism of vor-
tex reconnection [22]. The vortex collision at right angles,
which corresponds to our experiment described in the
previous section, has been simulated in detail (Fig. 11)
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FIG. 11. Computed side views and front views of the colli-
sion of two vortex rings at right angles. The illustrations are
the isovorticity surface of magnitude (|w|) at the level of 0.40
of the maximum vorticity at each instant.

using the same computational methods in order to esti-
mate the acoustic emission by the vortex interaction in
which the antiparallel configuration of vortex lines at the
inner part is susceptible to reconnection by the vortex
motion itself. The initial vortex rings are set at such a
sufficient distance that enables us to see both a transla-
tional phase and an interacting phase.

The Navier-Stokes equation (3) is solved numerically
together with the continuity equation (4) by the pseudo-
spectral method on N3=643 grid points. Periodic bound-
ary conditions are assumed with the period 27 in the
three orthogonal directions. The alias error is eliminated
by a shifted Fourier transform (see Ref. [23]). The Runge-
Kutta-Gill scheme is used for the time marching with the
time increment At=0.05.

Initially, two vortex rings are set with d = 3.65, d
being the distance between their centers. The vorticity
is distributed along the circular center line of each vortex
with Gaussian core,

w(o) = weexp[—(c/a)?],

where a=0.20, wo=23.8, and o is the distance from the
center lines. Vorticity fields below 1% of its maximum
value (wp) are set to be zero. In Table I are listed the pa-
rameters used in the present numerical simulation, where
D = 2Ry and po are the diameter of vortex rings and
density of fluid, respectively. The circulation of the vor-
tex tube is I' = ma?wo = 2.88 and the translational ve-
locity U of the vortex rings is estimated by Saffman’s
formula for a thin vortex ring [24],

2.88 [ (8 x 0.49
og. | ——=—

= — — 0.558( =1.13
4m x 0.49 0.20

B. Estimation of the vortex sound

The Reynolds number of the present numerical sim-
ulation is much smaller in magnitude than that of the
experiment (see Table I) and hence the effect of viscous
diffusion would be considerably larger. The calculated
coefficients of vortex sound using the data of the simu-
lation would contain both effects of the viscous diffusion
of vorticity and the interaction of two vortex rings. It
is thus desirable to separate these two effects in order to
estimate the main-mode coefficients associated with the
vortex interaction which is considered to be dominant in
the experiment.

In order to remove the effect of viscous diffusion, we

TABLE I. Parameters of the computer simulation and the
experiment.

Parameter Simulation Experiment
D =2R, 0.98 9.4 mm
p 1.0 1.2 x 10~ ° kg/m’®
v 0.01 1.5 x 10~ ° m?/sec
U 1.13 27.3 m/sec
M=UJc 0.08
Re=URo/v 55 8550
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also simulated the motion of a single isolated vortex ring
with the same initial condition as the one of the two
vortex rings in the collision case. (Note that in the ex-
periment we also removed the acoustic waves prior to the
interaction.) Then we construct the vorticity field by su-
perposing the field of its mirror symmetry on that of this
single ring, that is, two vortex rings go through merely
without interaction. The difference of acoustic waves cal-
culated from the realistic simulation field (with the inter-
action) and this imaginary field (without interaction) is
considered to give a rough estimate of the acoustic waves
caused by the vortex interaction.

Wave profiles of the vortex sound are calculated from
the field variables of the vortex motion. The isotropic
component is proportional to the time derivative of the
energy dissipation rate € [see Eq. (24)], and quadrupole
components and higher modes are related to the time de-
velopment of moments of the vorticity distribution. Us-
ing the data from the numerical simulation, we can obtain
the tensor coeflicients Q;;(¢t) and Q;;jx(t) defined in (14)
and (15). The spatial integrations of these moments are
carried out over the whole space of (27)3 periodic box by
using the real data on 1282 grid points, which are made
from the 642 Fourier data. That is, the vorticity outside
of this periodic box is set to be zero and the real data are
interpolated by Fourier functions. The main-mode coef-
ficients A = (Ao, ..., B2) of the acoustic pressure in (29)
are calculated by using Eq. (24) and Egs. (30a)-(30d).

Thus, the mode amplitudes of A are found in the nu-
merical simulation by removing the viscous diffusion ef-
fect as mentioned above and normalized by using the ra-
dius Rg and velocity U. The time is normalized as tU/Rg

and the tensor coefficients are normalized as Ql(?)/(Ro U%)
and Q(-;,)c/(Ro U®). In Fig. 12 these dimensionless quan-

?,
tities (Ao, ..., Bz) are shown as the function of the di-
mensionless time ¢ for comparison with the experimen-
tal amplitudes with the scales on the right-hand side of
Fig. 7 (the origin of # being chosen near the peak position
of A, which is t = 2.5). The time develoments of the
tensor coefficients are interpolated by a B-spline func-
tion to calculate their time derivatives and the curves
are smoothed out. Figure 13 compares the rate of en-
ergy dissipation €(t) for the present case with twice that
of a single isolated vortex ring €o(t). The difference
ANe(t) = €(t) — 2eo(t) is considered to be the rate en-
hanced by the vortex interaction.
The normalized vortex sound is defined as

p(o, p,t) = /io(t) + Al(t)on(cosO)

+ Ay (t) PZ(cosf)cos(2¢)
+M|[B, (t) P2 (cosb)
+ B, (t) P2 (cosf)cos(2¢)] , (31)

obtained by dividing Eq. (29) with (poRU%)/c?rops,
where M=U/c is the Mach number and set at the exper-
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FIG. 12. Calculated mode amplitudes (Ao, ..., B;) from
the numerical simulation. The lower time is the time ¢ in the
simulation, and the upper one is the time ¢ normalized by
Ry /U with the origin at the time b.
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FIG. 13. Time developments of the rate of energy dissi-
pation € (broken line), twice that of a single vortex ring €o
(dot-dash line), and their difference Ae (solid line) multiplied
by 10, from the computer simulation.



imental value M=0.08. The order of the time derivative
in the amplitudes A;(t) and A3(¢) is the third of Q;;(t),
whereas that of By(t) and By(t) is the fourth of Q;;x(t).
In view of the small multiplying factor M to B;(t) and
B;(t), the third-order modes P and P? become signif-
icant only when time variation of w(y,t) is very rapid,
namely when an energetic motion is excited.

In the numerical simulation itself there is no acoustic
wave because of the incompressibility condition imposed
to the computation. However, in the theory of the Sec. II
taking account of the fluid compressibility, the wave pro-
file can be calculated by using the vorticity obtained from
the incompressible simulation in an asymptotic sense as
M — 0. Equation (31) represents the time variation of
the wave pattern.

V. COMPARISON OF THE EXPERIMENTAL
OBSERVATION AND THE NUMERICAL
SIMULATION

The behaviors of the mode amplitudes of Figs. 7 and
12 are qualitatively similar, but quantitatively different.
This is considered to be due to the difference of the
Reynolds numbers, i.e., the experimental Reynolds num-
ber is two orders of magnitude higher than the computa-
tional Reynolds number (Table I). Although the dimen-
sionless time scale of the numerical curves is larger, about
1.7 times of the experimental ones, there is coincidence
in the qualitative property that the time interval of the
positive peak of the amplitude B; lies in the interval be-
tween the two lines a and b, i.e., corresponding to the
minimum and maximum of the amplitude A; in Figs. 7
and 12.

Remarkable similarity is found for the time evolution
of the vortex structures. To compare with the computed
diagrams of Fig. 11, shadowgraphs of the oblique colli-
sion are shown in Fig. 14 (side views) and Fig. 15 (rear
views), in which density inhomogeneity is taken in pic-
tures with the optical effect integrated along the line of
sight. The cores of the vortex rings are seen as thin
filaments at the front of starting jets issuing from two
nozzles set at right angles in Fig. 14(a) and as deformed
closed curves in Fig. 15(a). Figures 15(b)-15(d) are the
shadowgraph illustration of the process of reconnection
of the vortices and corresponding side views are shown
in Figs. 14(b)-14(d). These pictures are taken at differ-
ent experimental events, not sequential in a single event.
The vortex speed is higher in this optical observation
(U=81m/s, Ry=4.5 mm, Re=2.4x10%) than that in the
previous acoustical observation. Owing to the higher
speed, traces of wave generation are seen in the shadow-
graphs, say Figs. 14(c) or 15(c). Morphological similarity
between the computed vortex structures and the optical
ones is apparent in the Figs. 11, 14, and 15.

Quantitatively speaking, the amplitudes of the dimen-
sionless modes A; and A in the experiment are about 25
times of those of the simulation, and the observed mode
By is about 125 times of the simulation. In the real scale
the observed B; is the same order as the observed A;
or A;, but the numerical mode B; is about one-fifth of
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FIG. 14. Shadowgraphs of the side view of the collision of
two vortex rings at a higher vortex speed than that of the
acoustic measurement: (a) 0pus, (b) 20 us, (c) 40 pus, and (d)
60 us [relative time from the instant (a)].
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the numerical mode A; or A;. Therefore there is little
contribution of the mode B; to the computed directional
distribution of the wave. Accordingly computational dia-
grams corresponding to Figs. 8-10 have approximate up-
down symmetry (with respect to the z3 axis), which is
represented mainly by the two quadupoles A, (t) PJ(cos 6)
and A;(t)PZ(cos ) cos(2¢). The larger time scale in the
computation (due to the larger viscosity effect) results in
the smaller amplitudes because the amplitudes are de-
termined by time derivatives. The numerical simulation
at the Reynolds number as high as the experimental one
has not been performed so far, unfortunately, because
of the limited computer power. Therefore at present we
have no estimate of the viscosity dependence of the mode
amplitudes and also that of the vortex interaction. Note
that the results of the numerical simulation by Ref. [25]
for the head-on collision of two vortex rings imply that
the computed profile obtained at lower Reynolds numbers
get nearer to that of the experiment at a higher Reynolds

-

FIG. 15. Shadowgraphs of the rear view (viewed from the
positive y3 direction) of the collision of two vortex rings: (a)
0 us, (b) 20 us, (c) 30 us, and (d) 50 us [relative time from the
instant (a)].
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number when the Reynolds number of the simulation is
increased.

A remarkable property obtained in the experiment is
the asymmetric emission represented by the mode PJ.
Its effect is seen in Figs. 8 and 9 at the times marked by
« and B. This is considered in the next section.

VI. SIGNIFICANCE OF THE DOMINANT
MODES AND ASYMMETRIC EMISSION

Observed amplitudes A; and A, of the two
quadrupoles P2 and P2 cos(2¢) in (29) are substantially
large and there exists non-negligible amplitude of the
monopole in the observation (Fig. 7). By the theory de-
veloped in Sec. II, the amplitudes A;(t) and A,(t) are
represented in terms of three longitudinal quadrupoles
@11, Q22, Q33 (to the directions z1, x2, £3), as understood
from the form of the coefficients of F; in Eq. (26).

Out of the two third-order components, the amplitude
B, of the mode PZcos(2¢) is negligibly small, but the
appearance of the mode P? is substantial. To see the sig-
nificance of these modes, we examine their amplitudes B;
and B;. From Eq. (30c), the amplitude By (t) is propor-
tional to the fourth-order time derivative of the following
integral:

2p3(y,t) (¥3 —y?) Py,

(32)

Qsss(t) — EQen() = 55

where
2p3(y,t) = y1wz — Yow1 S Y« AWy,

1
P= §y Xw,
the vectors y.« = (y1,¥2) and w. = (w1,w2) being pro-
jections of y and w on the plane (z;,z3). Similarly the
amplitude B(t) is proportional to the fourth-order time
derivative of the integral,

Q13(t) — Q223(t) = % /[2p3(yf -v3)
+4(p1y1 — P2y2)ys) d°y (33)

which does not vanish due to an asymmetry in the
(z1, x2) plane. However, its contribution to the wave
profile is reduced by the factor 1/30 multiplied to the
above integral as given in Eq. (30d). In fact, the ampli-
tude B, is very small in both the observation and the
simulation.

As seen from Eq. (32), the amplitude By (t) is related
to the distribution of p = 1y X w, the impulse density of

the vortex system. The total impulse Pi(”)=47rQi defined
by the space integral of p;(y,t) is conserved in the vortex
motion in free space (an analogue in the vortex system
to the momentum conservation). Integrating p(y,t) over
a large volume V and taking the time derivative, one has

d

EP(v) =1 /Vy X Ow d3y . (34)
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Using Eq. (6), the integrand in RHS is expressed as 2v xw
plus several terms in the form of space derivatives, and
these derivatives yield surface integrals over S surround-
ing the volume V which vanish in the limit as the surface
S recedes to infinity. Further, the ith component of v x w
is expressed as Bk(%vztsik — v;U;) and its volume integral
is again transformed to vanishing surface integrals. Thus
the RHS of Eq. (34) vanishes identically. The invariance

of Qi(= Pi(") /4m) leads to the absence of dipole emission
in the present case.

We now consider the case of head-on collision of two
vortex rings to see the significance of the impulse density
P- Suppose that two identical, but opposite sense of cir-
cular vortex rings are located in the two planes z3 = +7
at symmetrical positions with respect to the plane z3 = 0
and their centers being on the x3 axis, and that they ap-
proach the symmetry plane x3 = 0 in due course by their
own motions. By the symmetry of the vorticity distri-
bution, it is immediately verified that the two integrals
of Eqgs. (32) and (33) vanish identically. Therefore the
third-order modes B; and B, disappear in the head-on
collision. The only remaining quadrupole is Pj(cos6)
because we have

Q11 = Q22 , Qs3(t) = psysd’y #0 . (35)

T 12w

Thus the acoustic emission by the head-on collision of
two vortex rings is given by Ao(t) + A1(t) P (cos ), with
up-down symmetry along the z3 axis as well as the z;—
x symmetry, which is the case studied by Ref. [7]. The
oblique collision studied here has neither the up-down
symmetry nor the z;-z; symmetry. The former asym-
metry is represented by B (t) Py (cos ) and the latter by
Az (t)PZ(cos 0) cos 2¢.

It is remarkable that the amplitudes A;(t) and Bj(t)
depend on the spatial distribution and temporal evolu-
tion of only the component p3(y,t) [see Egs. (32), (35),
and (30)]. In particular very rapid change of p3(y,t) will
give rise to enhancement of the amplitude B (t), since
it is proportional to the fourth-order time derivative of
Eq. (32). Restricting our attention to the location of the
vortex line reconnection at the inner part C; and remind-
ing the geometry of the vortex lines (Fig. 16), the variable
p3 (near y,. = 0) is found to be positive before the recon-
nection and vanish when the antiparallel vortex lines can-
cel by the viscous effect. Its rapid change will give sub-
stantial contribution to the terms Qg?a(t) and Qg?k (t).
Similarly from the outer part C, there is another substan-
tial contribution. In this regard, notice that local fluid is
driven upward energetically by the vortex-pair configu-
ration (characterized by antiparallel vortex lines) formed
before reconnection at the inner part [Figs. 14(a), 14(b),
15(a), and 15(b); the trajectory C; of Fig. 2], and then
local downward motion is excited by subsequent collision
of the outer part [Figs. 14(c), 14(d), 15(c), and 15(d);
the trajectory C, of Fig. 2]. The first inner-part collision
generates the upward emission around the time a and
the second outer-part collision generates the downward
emission around the time 3. The formation of vortex-pair
configuration before reconnection is referred to as col-
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FIG. 16. Schematic illustration of the geometry of vortex
lines just before reconnection.

lapse (to antiparallel configuration) in the recent article
[26] on high-performance computer visiometrics. In the
present case the antiparallel configuration at the inner
part occurs naturally by the initial setup of two vortex
rings.

Thus, the significant amplitude B;(t) observed in the
experiment (see Fig. 7) is representing an acoustic sig-
nal of local energetic motions excited by the collision.
The observed acoustic pressure exhibits a characteristic
asymmetry of the directivity at the times when the PP
mode is significant.

It is confirmed in the computer simulation (but not
shown here) that there exist two regions in space which
contribute to (d/dt)2Q333: one is near the place of re-
connection (along the trajectory C; of Fig. 2) but shifted
slightly upward (to the positive ys direction), and the
other is near the trajectory C,, but shifted slightly down-
ward (to the negative y; direction). The former part gives
positive contribution, but disappears soon, while the lat-
ter one gives both negative and positive contributions
with the negative one dominating and continues to exist
after the time b. In regard to the property mentioned
earlier (in the beginning of Sec. V) that the positive B;
pulse is located between the times a and b, we note that
the time derivative in A;(¢) is third order, while that in
B (t) is fourth order.

Thus it is found that the up-down asymmetry of ra-
diation at the times o and S is related to the energetic
motion excited by the oblique collision, in which the re-
connection of vortex lines is occurring.

VII. CONCLUSION

A general mathematical formulation for the acoustic
wave generated by a vortex motion is presented. The
acoustic field is expressed in the form of multipole expan-
sions and the far-field pressure is represented by a linear
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combination of the spherical harmonics on a sphere of
observation. The isotropic component of wave pressure
(monopole) is proportional to the time derivative of the
energy dissipation rate. The components of the second-
order terms (the quadrupoles) and of higher-order terms
are related to the time development of moments of the
vorticity distribution.

This formulation is applied to the case of oblique col-
lision of two vortex rings, which is a source of the sound
emission. The vortex motion is influenced by the vis-
cosity. Reconnection and merging of vortices in the colli-
sion process of two vortex rings are simulated numerically
by solving the Navier-Stokes equation and the continuity
equation. The components of acoustic pressure have been
calculated by using the computed vorticity distribution,
based on the mathematical expressions developed in the
present paper.

Apart from the numerical simulation, laboratory ex-
periments for this problem have been made indepen-
dently. The trajectories of the vortex cores were ob-
served optically. The acoustic pressures were measured
in the far-field on the three orthogonal planes. The main
modes of the acoustic radiation are the two quadrupoles
which are expressed by two second-order spherical har-
monics. The third-order mode (which is not usually dis-
cussed in the literatures) has been found to be significant
with the amplitude which is of the same order as the two
quadrupoles at and after the time when the vortex cores
begin to touch each other. This exhibits a characteristic
emission of up-down asymmetry.

Comparison has been made between the acoustic
modes obtained in the experiment and those of the nu-
merical simulation. It is found that the profiles are quali-
tatively in agreement. However, the numerical mode am-
plitudes are much smaller than the observed ones and the
time scale of the numerical profiles is larger. These quan-
titative differences of the profiles may be attributed to
the difference in magnitude of the characteristic Reynolds
numbers.

These studies are juztaposed [26] with an additional
optical observation by shadowgraphs to see the collision

0=/V-(w YkYps *** Ypn) A°Y

T. KAMBE, T. MINOTA, AND M. TAKAOKA 48

process. Remarkable similarity is found for the morphol-
ogy and time evolution of the vortex collision between the
experimental observation and the computer simulation.
In addition, the shadowgraphs exhibit traces of wave
generation, which will be observed as acoustic waves in
the far field. This is consistent with the following view.
The characteristic asymmetric emission of the acoustic
waves is found at the times when the third-order mode
B, (t) is substantial. Based on the mathematical analysis,
this is interpreted as representing the acoustic signal of
the local energetic fluid motion related to the collision,
reconnection, and subsequent motion of vortices.
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APPENDIX: DERIVATION OF EQS.(9)—(11)

We are going to show here that, starting from
v; = €55 0 Ax

where Ay, is given by (7), we obtain

where @, is given by (10).

In fact, in view of the assumed localized distribution
of the vorticity w(y,t) satisfying V - w = 0, we have the
following identity:

- /[wk Yp: " Ypn YW Yps Yp, T+ YkYp, - ypn—lwpn]d3y

— k P

- Wmmpn + Wk;z...pn +oeet

_ k

- WPI»--Pn + Z WI?;)?...pn
[P1,.-sPn]

where Wk is defined by (8), the summation in the

second term of the last expression is understood to take

all the cyclic permutation of (p1,...,p,) with k fixed

(all the indices take values on the integers 1, 2, and 3).
Hence from (7) we have

an

kp1..pn-1

(A1)

v; = €;k0; Ak

_ 1 {2 (=" k 1
T 4rw n!
n=1

E E s,-jkWplmp"Bjapl---8,,";.
p1 Pn

(A2)
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We introduce

Cotyotny = /(y X W)s Yty Ytn_ Aoy

= €spq thl.“t,, (A3)

b4 -1 "

We multiply the C,y¢, ...+
with respect to s,

n_y With €, and take the sum

6sle.s tytn_1 — €Eskl eaquq

pti..tn_a

— 1 k
=Witrtas = Witsotas

Here we take the sum of (A3) for cyclic permutation of
the indices (I,t1,--+,tn—1) With k fixed,

1

n+1

:21_2 e, Z zz Z

-yPn]

pu8ips 0;0p, By - - Bp

E eales t1otn—1

[lt1,stn—1]
l
= Z Wity tn s
[Lt1,estn—1]
=—(n+1) ‘/Vlktl...t,,_l .

The second equality is obtained by the help of (A1). Mul-
tiplying this with €;;5 and taking contraction with respect
to k. we obtain

k
-nW t1.tn_1

ei,kW

«Pn

=—-—7 E €:jk€p1skCsps--pn
[Ply'--vpn]
1

= “n+l Z [ Cipa--pndips
[P1ye-sPn]

Thus, substituting this in (A2), we obtain

- Cipz'“Pné.jpl ] .

8,071 !

(A4)

Pn

- Cipz Pna

Since 87 (1/r) = 0 (for  # 0), the second term in the brackets [] vanishes. Further, noting the relation

R DD NP N 2

,Pn] P1 P2

p1 P2

and &;,, 8p, = O;, we finally find the expressions (9)—(11) in the main text from (A4), where the suffix j is written as
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FIG. 14. Shadowgraphs of the side view of the collision of
two vortex rings at a higher vortex speed than that of the
acoustic measurement: (a) Opus, (b) 20 us, (c) 40 us, and (d)
60 ps [relative time from the instant (a)].



FIG. 15. Shadowgraphs of the rear view (viewed from the
positive y3 direction) of the collision of two vortex rings: (a)
0 ps, (b) 20 us, (c) 30 us, and (d) 50 ps [relative time from the
instant (a)].



